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Abstract  

Some unpleasant features of the usual treatment of irreversible processes in quantum 
mechanics are discussed. It is shown how the description of a non-relativistic unstable 
particle can be cleanly embedded into a reversible Galilean quantum field theory. 
It is proven that in the case of stable particles the embedding procedure gives the same 
values for internal energy which are obtained by the usual procedure. Finally the tech- 
nique is applied to the 'Galilee' model. 

1. Introduction 

In this paper we are concerned with the problem of describing irreversible 
processes in the framework of  quantum mechanics. Such a problem is met 
at the macroscopic as well as at the microscopic level. 

(a) A basic point for physics is that we can give to the macroscopic 
observables of  macroscopic systems objective (i.e. independent of any 
observation) values and that the time evolution of  such values is given by 
self-contained, irreversible equations of  motion (e.g. the Boltzmann 
equation for a dilute gas, the Navier-Stokes equations for the hydrodynami- 
cal stage, etc.). Such points have a fundamental relevance for quantum 
mechanics itself: indeed the 'realistic' interpretation of  quantum mechanics 
requires the existence of  a macroscopic 'classical' level of  description 
(Ludwig, 1953, 1954, 1955; Daneri et al., 1962, 1966; Prosperi, 1967; 
Lanz et aL, 1971; Rosenfeld, 1965). Therefore for reasons of  coherence 
such a prerequisite must in turn be deduced from the quantum mechanical 
treatment of  N-body systems. A very significant step in such a deduction 
is the so-called "master equation' (Pauli, 1928; Van Hove, 1955; Prigogine, 
1962), which is a linear and irreversible equation for the time evolution 
of the relevant observables. Unfortunately the master equation cannot be 
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deduced in an exact way from the basic reversible equation of motion for 
the N-body system. One must be content with an approximate result; 
sufficient conditions for the reliability of the involved approximations can 
be given, but it appears hard to verify such conditions in realistic cases 
(Prigogine, 1962; Van Hove, 1957; Zwanzig, 1961 ; Lanz & Ramella, 1969; 
Lanz & Lugiato, 1970). 

(b) Some of the known unstable particles have a lifetime long enough 
to be experimentally detectable, and their interpretation as particles is 
obvious. As for the very short-lived ones, the so-called resonances, strong 
arguments exist supporting their interpretation as particles. Typically, in 
the theory of unitary symmetries, stable particles and resonances can be 
put in the same multiplet. However, stable and unstable particles are not 
treated on the same footing in quantum field theory. In fact stable particles 
are defined by association with an irreducible component of the unitary 
representation of the Poincar6 group given by the field theory; this defini- 
tion cannot be extended to unstable particles, due to the unitarity of time 
translations in field theory. Further, we know experimentally that the long- 
lived particles decay to a high degree of accuracy by an exponential law. 
However, in field theory there is no state vector leading in an exact way to 
an exponential decay; there are only states giving an exponential decay 
within a certain approximation (Levy, 1959; H6hler, 1958; Araki et al., 
1957; Glaser & K/illen, 1956-57; Zumino, 1961). In any case there is a 
large arbitrariness in the choice of such states. 

The origin of these difficulties is, in our opinion, linked to the following 
facts. A physical object is characterised in quite a natural way by a suitable 
set of observables; e.g. a macroscopic object by a set of macroscopic 
observables, a particle by its position, momentum and spin. However, we 
usually associate to such objects a Hilbert space ~ in which many more 
variables can be represented; these variables describe a fundamental ideal 
structure which is supposed to be underlying to the objects we are con- 
sidering. Due to the hypothetical character of this structure, such variables 
need not be observable; examples thereof are the N-particle structure of 
M1 macroscopic systems and the field structure of particles, in general w e  
shall call the ideal structure underlying to an object S the 'model' of S. 
The sets of compatible observables of S are not at all complete systems of 
operators in the Hilbert space ~ of the model, so that one does not know 
how to associate a state vector to the object. Usually such a difficulty is 
bypassed by ad hoc assumptions; a typical example is the equiprobability 
and random phase assumptions to select the initial statistical operator for 
a macroscopic system. Besides this intrinsic ambiguity, self-contained 
dynamics for the typical observables of the object is obtained at the cost of 
rather questionable approximations. On the other hand, it seems to us 
that for the operational individuation of an object the existence of a 
statistical causality for its observables plays a fundamental role. Therefore 
the coexistence of self-contained dynamical descriptions for the objects 
with the model describing their structure is, in our opinion, a crucial 
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problem. The aim of this paper is to show in a particularly simple situation 
that introducing a suitable mathematical procedure of  embedding of the 
object into the model such a coexistence becomes straightforward. This 
procedure is in a sense the particle-field analogous of the "embedding" 
recently proposed by Ludwig to exhibit the coexistence of the macro- 
dynamics with the N-body theory (Ludwig, 1972, p. 116 if). 

In the present paper we consider the embedding problem for a non- 
relativistic (generally unstable) particle into a Galilean field-theoretical 
model (Levy-Leblond, 1967). For such an object the self-contained dynamics 
is completely characterised by the symmetry under transformations of the 
Galilei group and the requirement that a position operator exists, as has 
been discussed in a previous paper (Lanz et al., 1973). The embedding 
procedure essentially fixes the numerical values of spin, lifetime and internal 
energy. The complete description of the decay process, including the decay 
products, will be given in a forthcoming paper. 

In Section 2 we recall briefly and complete the results of Lanz et al. (1973) 
on the description of a non-relativistic particle. In Section 3 we characterise 
the class of models we consider; in Section 4 we define the embedding 
procedure, which is concretised in Section 5 into a suitable technique. 
We prove further that in the case of a stable particle such an embedding 
technique provides the same results as the usual procedure. The technique 
is finally applied to the 'Galilee' model (Levy-Leblond, 1967) in Section 6. 

2. Description of a Non-Relativistic Particle 

Let us consider a particle O with mass M and spin j. According to the 
results of Lanz et aL (1973), which we recall briefly, its description is given 
in the space ~ × R of couples (f, t), where - ~  < t < + ~  and f belongs 
to a Hilbert space ~ .  ,~  is the direct integral of Hilbert spaces ~(p), 
p~Ra,  with the Lebesgue measure, ~ = S  • ~(p)d3p, ~(p) being the 
space ~J)  of the irreducible representation ~o)  of SU(2). ~ is the space 
of a projective, unitary, irreducible representation of the group f¢0 of 
space translations, rotations and accelerations: 

T(a) { f(p)} = {e -'ap f(p)} (2.1 a) 
O(R) {f(p)} = {D°~(R) f ( R  -* p)} (2. tb) 

G(v) {f(p)} = {f(p - Mr)} (2.1c) 

where {f(p)} eaet °, aERa, ReSU(2) ,  veRa ;  T(a), O(R) and G(v) are 
the operators representing space translations, rotations and accelerations 
respectively; D¢J)(R) is the operator representing R in ~J) .  

Any 'maximal sharp' property y of O is placed in correspondence to an 
element fr e ag. To an observation of the 'maximal sharp' property y of 
O performed at time t the couple (fi, t) corresponds. If a collection of N 
particles has by preparation at time to the property Yo, the number Nr, q 
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of particles for which the property 71 is ascertained at a time tl > to is 
given by 

N,I,, ,  = l(f,l, V(t~ - to)Lo)l 2. N (2.2) 

where V(t), t > O, is a semigroup of  contractive linear operators given by 

V(t) {f(p)} = exp - i  + 2 t f (p)  , t > 0 (2.3) 

where 2 = U -  i(?/2), U being the internal energy of  the particle and 
the inverse lifetime. The symmetry of the theory under the transformations 
of the proper orthochronous Galilei group fq g = (b, a,v, R) is expressed 
by the fact that ~ x N is the space of a representation of ~ given by 

°g(b, a, v, R) (f,t) = (U(a + vt, v, R)f,  t + b) (2.4) 

with 

and 

U(a, v, R) = r (a)  G(v) O(R) (2.5) 

l(V@ + vt,, v, R)f, v ( t l  - to) e ( a  + , t o ,  v, a)g)l 
= l(f, v ( t , -  to)g)l, f ,  g e a~ (2.6) 

× ~ is also the space of a representation of the full Galilei group, such 
that space inversion and time inversion are given respectively by 

~ ( f ,  t) = (P f ,  t) (2.7) 

a-(f ,  t) = (T f , - t )  (2.8) 
with 

P{f(p)} = {f(-p)} or P{f(p)} = {-f(-p)} (2.9) 

according to the intrinsic parity of the particle, and 

TImT_jfm(P)Um].__ . ( +J , --I.~_xf'_.(-p)(-1)"lu.} (2.10) 

urn, m =--j,  --j + 1 . . . . .  +j is the orthonormal set of eigenstates of S:, with 
the phases chosen in such a way that 

S+ u,,_l = %/[(j + m) ( j  - m + 1)] um (2.11) 

with 

s + =  sx  + i s ,  

where Sx, Sy, S~ are the generators of rotations in ~(J). The set T(a), 
V( - t ) ,  O(R), G(v), P is an irreducible projective, generally non-unitary 
representation on ~¢t ° of  the orthochronous Galilei semigroup. 
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3. Galilean FieM Theoretic Models 

The typical models which are supposed to explain the structure of 
particles are relativistic quantum field theories. Since we have so far 
developed a Galilean formalism we shall discuss the embedding of non- 
relativistic particles into a Galilean field theory. Despite its unrealistic 
character, such a problem has, in our opinion, a formal and methodological 
relevance. Galilean interacting field theories can be very easily constructed 
introducing interactions between free particle fields by means of an inter- 
action Hamiltonian which commutes with all the operators representing 
the Lee algebra of free fields, except the free fields Hamiltonian. Galilean 
field theories are extensively discussed in Levy-Leblond (1967). We mention 
here the fact that the Hilbert space of the field theory decomposes into the 
direct sum of superselection spaces 2M,  each one corresponding to a 
fixed mass M. In each ~ M  one has a projective representation of the 
Galilei group with factors depending on M; the Hitbert space YM is 
spanned by many-particle states, the number of particles of each type 
being such that the total mass equals M. The dynamics of the fields can 
describe general processes ill which the total mass M is conserved, i.e. not 
only scatterings but also decay and production processes. 

The model we take as underlying to a particle with mass M is the super- 
selection sector with the same mass M of a suitable Galilean field theory. 
The corresponding Hilbert space 2 M  (we shall drop the index M ill the 
sequel) is the space of a projective unitary representation of f#; then 

@ 

2 = f h(p) dp (3.1) 

where h(p) = rio, ho being a suitable Hilbert space and up to an equivalence 
(Wightman, 1962) one has 

T(a) {f(p)} = {e-'"*f(p)} (3.2) 

O(t) {f@)} = {e i~ot e"'~/2m~f(p)} (3.3) 

O(R) {ffp)} = f ( R  -1 p)} (3.4) 

G(v) {f(p)} = {f(p -- My)} (3.5) 

where O( t )=  eim is the operator representing time translations, D(R) 
gives a unitary (in general non-irreducible) representation of SU(2) on 
ho, e ~E°~ is a unitary one-parameter group which commutes with/3(R), 
VR ~ SU(2). The meaning of the other symbols is obvious. 

We assume that the field theoretic model is invariant under space and 
time reflections. Then the representation of f# in ~ can be extended to a 
representation of the full Galilei group 

P{f(P)} = {/of@P)} (3.6-) 

T{f(p)} = {To f ( -p)}  (3.7) 



6 L. LANZ e t  al. 

where io is a unitary and 20 an anti-unitary operator on ho; both commute 
with Eo, D(R), Y R  e SU(2). 

We stress that the assumption that the field theoretic model is invariant 
under space reflection is not necessary for the embedding procedure; if 
the model is not P-invariant, all the following considerations, except the 
ones concerning parity, hold unaltered. Also the T-invariance is not strictly 
necessary; however, to perform the embedding, one needs an anti-unitary 
symmetry T'. The simplest case is T ' =  T, but one might consider also 
other possibilities, as e.g. 2" = P2; in such a case 2 should be replaced by 
2 '  in the following. 

4. Definition of  the 'Embedding" 
The particle O is embedded into the model if for any ~ > 0 and any finite 

set z of  non-negative time points two mappings (9+ and (¢_ from ~ x 
to ~ ,  i.e. 

~+(f ,  t) =f+(t) ,  #_(f ,  t) =f_( t ) ,  f E  ~ ,  f±(t) e ~ (4.1) 

exist with the following properties: 

(a) for anyf l ,  fz e 

f#+(cc f l  + fl f2, t) = o~+(fl, t) + flf~+(f2, t) (4.2) 

(b) the mappings ~+ are compatible with symmetries 

f~+ ql(g) (fi t) = co(g, t) U(g) f~x(f, t), g e f9 (4.3) 

where ~o(g, t) is a suitable phase factor, and 

U(b, a, v, R) = U(b) 2(a) G(v) O(R) f~+ ~ = Pf~± (4.4) 

(c) for any f,  g e Jgfl, [[/[[ae = Hgllae = 1, t - to e z 

[l(f, V ( t -  to)g)ael 2 -  [(f_(t),g+(to))~12[ < ~ (4.5) 

(d) ~+ and ~_  are linked by the relation 

~+ 3-  = L %  (4.6) 

Let us comment on the points (a)-(d). From (4.3) for g = (t, 0, 0,I) we have 

f+(t) = e'm' fA0) (4.7) 
therefore the mappings f~+ can be written more explicitly as 

= e  . , + f  (4.8) 

where by (a) G+ are linear operators from ~(Y to ~ .  From (4.3) and (4.4) 
we have, assuming for simplicity co(g, 0) = 1, 

G± U(g) = U(g) G±, g e fqo (4.9) 
co(g# ) = exp (--}My 2 t) 

G± P = PG± (4.9') 
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Requirement (c) says that all theoretical provisions about the particle 
given by (2.2) can be obtained using the model as well. In fact 

1 I(f,, v(tl - to)Lo)~l 2 - [(e 'H' G*-_L, e ffho G+f~o)a~iet  < e, t - to ~ z 

(4.10) 

The element exp(iHt) G_f~ (exp(iHto) G+f~o) represents ill the model the 
maximal sharp property 7(70) observed (prepared) at time t(to). The 
restriction to a finite set of time points and the presence of the arbitrarily 
small e are irrelevant from a physical point of view, since in any actual 
experiment one makes a finite number of measurements affected by a finite 
error. However from a mathematical point of view the presence of the 
and the restriction to the set z has the effect that conditions (a)-(d) do not 

uniquely characterise the operators G_~:. In fact, for given 5 and z there is 

a class of operators {G+, G_},,~; if one takes d < 5, z" ~_ z one has 

{G+, c&,,,, (6+, c_L,, 

However (4.5) is a strong condition, even if one does not require that the 

intersection of the { +, G_},,, for all 5, ~ is non-void. In the case that such 

intersection is non-void, i.e. when at least a couple G~, G_ exists such that 

] ( f ,V ( t - to )g )ao l2=l (d  ' a_J ;e  ~ 'oa+g)~[ z, V t - t o > O  (4.11) 

one has a 'strong' embedding relation. As we shall see in the next section, 
< . .  ~ .  

equation (4.11) holds with G+ = G_ in the case of stable particles. On the 
contrary, in the case of unstable particles one does not expect that (4.1 i) 
can be satisfied. In fact one sees e.g. that (4.11) cannot be satisfied with 

G_ = G+ due to the fact that the Hamil tonian/7 is bounded from below 
(see Khalfin, 1957). 

The embedding is performed by means of two different operators #+ 
and ~_ because the description of the time evolution of an unstable particle 
is 'one-sided', i.e. a statistical causaIity exists only if a definite versus of 
the time evolution is chosen. In fact, N_ and #+ embed into the model 
respectively the couples (f,  t), (g, to) such that t >/to. Only in the case of 
unitary V(t) one requires ~_ = #+. One-sided evolution is not in contra- 
diction with time inversion invariance; in fact if the versus of the time axes 
is inverted a description equivalent to the previous one is obtained by the 
following transformations: 

(f, t) ~ 5"(f, t) = (T f, --t) a2&f ( f r , - - t )  

V(t) -+ TV(t)  T %  ~ V(- t ) ,  t >~ O (4.12) 
since 

I (LL v ( - t  + to)f~)~e[ = I(L, v( t  - to)fio)ael (4.13) 
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Equation (4.5) implies with (4.13) that 

l ] ( f  r, V( - t  + to)gr)ar] 2 -  [(/ f f(- t) ,g+r(-to))~[2l < 8 

f±r(t  ) = (iv~, + j - )  ( f r ,  t) (4.14) 

We require that the versus of the time axis does not affect the embedding 
operators so that, taking into account that - to > - t ,  (4.6) follows, from 
which 

if+ T = TG ~-_ (4. t 5) 

5. The Embedding Technique 
In the usual approach the stable particles of mass M are associated to 

the irreducible components of the representation of ~q in the superselection 
sector of the Gatilei field theory corresponding to M. 

The space of an irreducible component of ff is the subspace of 2 of the 
dements {f(p)} such that 

f(p)  e rio', v) (5.1) 

where h (j, v) is the space of the representation No) of SU(2) and also the 
eigenspace of Eo corresponding to the eigenvalue U. To such an irreducible 
component a particle with mass M, internal energy U and spin j corre- 
sponds. Let us consider a stable particle characterised by M, U, j and 
described as in Section 2 and a Galilean field theory, the M superselection 
sector of which contains an irreducible component of the representation 
of (¢ characterised by the same values U andj. Then a 'strong' embedding 
can be immediately performed with 

< - .  + -  ¢ - .  

G+= G_= G 

where the bases um in h (j) has been characterised in Section 2 and ~ '  v) is 
an orthonormal basis in h (a' v) of eigenstates of ~z = ~qx2 + ~z  + ~z2 and ~z 
such that 

(*~ + ,~,,J m-x = ~/[(J + m ) ( j -  m + 1)] ~.~> 

S~, ~y, ~z being the generators of the representation IJ(R) of SU(2) in ho. 
In the case of an unstable particle with mass M, spin j, internal energy 

U, decay constant y and positive (negative) intrinsic parity a generalisation 
of the forementioned embedding can be given if the following situation 
occurs: 

(a) There exist 2 j  + 1 holomorphic vector-valued functions ~)(z) ~ ho 
of the complex variable z, for z belonging to a suitable domain D, 
which are (i) eigenstates of Sz with eigenvalue m spanning for each 
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Z ~ D a representation ~o )  of  SU(2), (ii) eigenstates of  io all with 
the same eigenvalue +1(-1).  More specifically we assume that 

S~ f~)(z)  = m ~ ) ( z ) ,  m = - j , - j  + 1 . . . . .  +j  
+J 

Z3(R) ~)(z)  E (J) -(d) (5.3) = D , . , , . ( R ) , , , . , ( ~ ) ,  z e D 
mt=--j 

with D~?m = (urn,, D <J) u,.), so that by (2.11) 

X+ e~_) l(z) = v ' f ( J  + m) ( j  -- rn + 1)1 ~J~)(z) (5.4) 

loeg~(z) = e~'(~), (ioe2~(~) =-e2~(z)); 
m = - j ,  . . . .  j - -  1 , j  (5.3') 

(b) the expression 

(To(-1)m Z~(j)m(Z,), ,,-~/~o~ r,(mz ~ aof FO)(zl, Ze, t) 
~'m \ 2],~ 0 

rn =-- j , - - j  + l . . . . .  +j 

can be analytically continued in z~ and Za 
2 = U -  (i/2)? for all t > 0 and finally 

Where 
F(~(2, 2, t) = Z j  1 e -~at, t > 0 

- m - ( j )  " ( J )  Z Z ;  1 = (To(-1) V_m(Zl), Vm ( 2)~O[~l==Z=a 

(c) 

(5.5) 
to reach the point 

(5.63 

(5.7) 

(5.5) as well as (5.7) does not depend on m, as one easily verifies taking 
into account equation (5.4). 

We stress that in the weak embedding we shall perform, the functions 
~) (z )  play a role analogous to that of  the common eigenstates v~' v) of  
~7~ and Eo in the strong embedding (5.2). Such a role of 'weak eigenstates' 
of/?o with eigenvalue 2 appears clearly from property (c). 

Now let us define a linear operator-valued function G+(z) from J¢' to 
~ ,  hotomorphic in z for z ~ D, by the relation 

G+(z) =-" U m =  mE=_.f,n(.P) ( ) .i 

and the operator-valued function G_(z) by 
+ -  D + - .  

G_(z) = TG+(z) T (5.9) 

or explicitly 

G - ( z ) { m ~ , f = ( P ) u , . } = { , ~ s ( - l ) m f . ( P ) T ' o  vC°(zalT**'z-., , , ~ :  (5.10) 

One has easily by (5.6), (5.8) and (5.10) 
4 -  " H  <'-- 

(G_(z l ) f ,  e -~ t G+(z2)g),l~,=~z=z = ( f ,  V(t)g)ae (5.11) 



10 L. LANZ et aL 

In fact 

(G+-(z~)f, e-~tre G+(zz)g)a7 z~:~ = f tip e-'¢p2/2M)t +~ fm*(P)gm'(P) 

m - -  - ( j )  (-1) (To v_m(zl), e -i~°' ~,~(z2))So zl=zZj 
z2=,~ 

= dpexp( - ip2 /2Mt-  i2t) 2 fm*(P)gm(P) = (f, V(t)g)~e 
m = - - j  

where it has been taken into account that 

(To 0£~(zl), e -'co' f2','(z2))sot.~=~2=~ = 0 for m ¢ m '  

by analytic continuation from D, since 

v_m(zO = mZro e f(z0 
~z e-iEot - ( j )  __ z -- iEoe - ( j )  

V m ,(Z2) -- /Y/ e vn,, (z2) 

Furthermore one has easily 

(g) G±(z) = G+_(z) V(g), g E f#o, z e D 

-PG+(z) = G~(z)P, z e D (5.12) 

Equation (5.12) is trivial for space inversion and for g=(O,a,v,I);  for 
g = (0, 0, 0, R) one has 

(. {+:: } G+(z) O(R) 2 fm(P) u~ = G+(z) f~(R -~ p)/3(R) u~ ) 
m j m j 

= V,n,(Z) (urn, D(J)(R) urn) = O(R) 
I m , m l ~ - j  

• z H  = O ( R )  
~ m ~ - - j  I =-- " 

where equation (5.3) has been taken into account. A similar proof can be 

given for G_(z). If  the analytic vectors ~9(z) were continuable to the point 
2 equations (5.8), (5.11), (5.12) and (5.9) would define a 'strong' embedding 

with G~ = G+_(2). However, for y ~ 0 one does not expect such a situation 

to occur: one expects that f~)(z) and therefore also G~(z) are not continuable 
to 2, even if expression (5.5) is continuable. Let us assume for simplicity 
that ZjF(J)(zl,z2,t) can be continued in z~ and z2 to 2, starting from a 
point Zo E D by only one power expansion, i.e. 

Z~ F (J) (2, 2, t) 

= 2 0.-Zo)'(~-Zo) ~ ~ ' ~  ~2-~0 ,.~=o r f  ~ az-[ ~ ZJF(J)(zl'z2't)-.=.o t~>0 (5.13) 
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Fo r  an arbi t rary e > 0, one can choose n large enough, so that  for  a finite 
set v of  fixed time points ta, t2 . . . . .  tk one has 

,~, t) - ~ (~ - z°)~ (~ - Zo)" a, ~--z,a' z~, t) Zj F(J)(2, r! s! az: oz: -F(J)(z~' < g, 
~:~ 

t',s=O 

t e v  (5.14) 
Defining 

s f & = S '  ('~ -Zo)  d s ,- 
/-:-, s! ~ G + ( z )  (5,15) 
~ = 0  Z=2rO 

G _ =  ~ + T  (5.16) 
one has 

+ j  + j  n 

8+ gm(p)um= gin(P) s f  dz" lz_zoj a 
m=-3 m=-j s=O - 

t +J 

G_ ~_ fm(~)Um 
m--3 } 

" * - Z o  ) ® d v_,,( )[ t7 ,1 /2  = ;~ ~ 0 - - - ~ i  f.~j (5.18) 
= _ -  in I * ~=2;OJ 

so that  

"22 (&f.e_,..&g)~= f ape_,,:,2M. ~ (:~-~o)'(:~-Zo)'., ~t 
m=-j r=O s=O 

a~ a~ 

~=~=~o z j U"* (p) g"(p) - -  - - F ( J ) : z  z t )  
• O z :  O z :  ~ 1, 2, 

Then, taking into account  (5.14) one has 
+J  

[ ( G - f , e - m t G + g ) ~ 7 -  f dpe-'(:/2mtZ~ ~ F("(X,2, t)f.,*(-P)g,,*(.P)l 
1TI=--J 

+J 

<~ f dp ~ lf,.*(p)llg,.(p)l <ellflI~,llgllz=~, t e , ,  

f , g  e a(:, [[f[[ae = H gtl,,v = 1 (5.19) 

and finally by (5.6) we have 

] (G-f ,  e-mr G+6:~e 0~ - - ,J,:c g(t)g)~e[ < e, t e v, 

f ig  e a/C', ll/llJe = llgtl~ = 1 (5.20) 

By equations (5.12) and (5.15) one has immediately that  

O(g) &_ = ~± V(g), g ~ ~¢o 

P~± = ~±P (5.20 
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Equations (5.20), (5.21) and (5.16) establish an embedding for the particle 
characterised by M, U, j, and (5.15) provides an explicit construction of 

the embedding operator G+. In the general case, in which the analytic 
continuation of expressions (5.5) to 2 requires more than one power 
expansion, an obvious generalisation of this procedure leads essentially to 
the same result, the only difference being in more complicated coefficients 

in the expression (5.15) of G'-+ in terms of (d'/dz~)G+(z)]z=~o. If the series 
(5.13) by which the analytic continuation is given is uniformly convergent 
with respect to t, for t belonging to certain intervals 5~ of the positive time 
axes, the intervals 5i can be included into the set v. Now the problem arises 
of finding concretely vector-valued functions ~,,~)(z) having the properties 
(a)-(c). In the case of a stable particle ~)(z)  are z-independent eigenstates 
of/?o corresponding to the eigenvalue U. Such an eigenvalue is a pole of 
the resolvent l E o -  z]-l; since •o is self-adjoint such poles can only be 
found on the real axes. 

The resolvent has first-order poles corresponding to the internal energies 
of the stable particles of mass M described by the field theory and a cut 
corresponding to the internal energies of two or more particle systems with 
total mass M. The resolvent cannot be analytically continued across the 
cut. However, by a suitable choice of art orthogonal projection operator 
P0 onto a subspace/~ of ho it may quite well happen that the reduced 
resolvent 

_Po ~ _  zff o (5.22) 

can be analytically continued from the upper to the lower half-plane across 
the cut, so that 2 = U -  i(~/2) is a pole of the continued operator (5.22). 
More specifically we shall assume that such a Po exists and projects onto 
a subspace invariant under rotations, space and time reflections, i.e. 

[/~, D(R)] = 0, R e SU(2) 

[Po, io] =0 ,  [Po, To] = 0  (5.23) 

We take over at this point the formalism of reduced descriptions, which has 
been much employed in non-equilibrium statistical mechanics (see, for 
example, Lanz et aL, 1971, and Lanz & Lugiato, 1969). The following 
representation holds true: 

I { 1 _ 
z -  £o [Po- ~o(Z)]z + ~7o(Z) [p°-  ~7°+(z*)] 

1 } 
+ (1 -_Po) z -  (I -Po) Eo(1 -Po) (t - P o ) ,  Im z ~ 0 (5.24) 
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where 
1 

)fo(Z) = Po Eo(1 - Po) (I - -Po) Eo(1 - fro) - z (1 - fro)/~o/~o - Po/~o/~o 

(5.25) 

37o(Z) = (1 - P o ) (  1 -/~o1/~o(1 - fro) -- z (1 - if°)/~°/~° (5.26) 

The operator)fo(Z) has the same role o f - E o  in the expression of  the reduced 
resolvent (5.22); in fact one has by (5.24) 

1 1 
& p° =z + 

but, differently from/~o, it maps /~  into itself and depends on z. By (5.25) 
and (5.26) the following relevant relation holds 

Ro+(Zl *) Ro(Z2) = )fo(Zl) - )fo(Z2), Im zl, Im z2 ~ 0 (5.27) 
zl - z2 

the operator No(z) is holomorphic in z for Imz # 0 and by (5.27) also 
) fo (Z) -  )fo(Zo), Imzo ~ 0, is holomorphic in z for Imz ~ 0. Our basic 
assumptions about the subspace/~ are as follows: 

(i))fo(Z) can be analytically continued from the upper half-plane to 
yield an operator )fo+(Z) holomorphic in a region D+ containing 
the point 2 (strictly one defines holomorphicity for bounded opera- 
tors, but in our case we have )fo(z) = )fo(Zo) + [)fo(Z) - )fo(Zo)], 
where the closure of )fo(Z) - )fo(Zo) is bounded (Lanz et al., 1971) 
and )fo(zo) is independent of  z, so that one considers precisely the 
analytic continuation of the closure of ~ro(Z) - ~ro(Zo)). 

(ii) The Kernel K of)fo+(2) + 2 in J~ is not empty. Such a situation can 
occur only when Im2 < 0 (Lanz et aL, t971). Since [D(R),flo+(z)] 
= 0, the Kernel K is invariant under rotations. 

(iii) K contains a subspace K u) invariant under D(R), R e SU(2), such 
that the restriction of /3(R) to K u) gives a representation D °). Let 
us indicate by ~ )  the corresponding normalised eigenstates of  ~q~ 
with the usual choice of phases. 

(iv) 
io ~ )  = ~ )  (/to ~ )  = --a~)), m = - j  . . . . .  j - -  I, j 

Then the vector-valued functions 

f~)(z) = [/~o --/~o(Z)] u~ ), m = --j, . . . .  j -- I, j (5.28) 

are holomorphic in D = {z: Imz > 0} and have the properties (a), 
(b), (c). In fact (a) and equation (5.3) hold trivially since 

[/)(R), 29o(Z)] = 0, [1o, ~o(Z)] = 0 (5.29) 
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which follows from (5.23). To verify (b) and (c) let us calculate 
explicitly 

F(J)(za, z2, t) = c ~ r~ r,(~) r z ~ e-.~Eo* ~(J)(z ~ k - - xJ  k ~ O u - m k  13~ m k 2)2~ 0 

q-oo+¢* 

- 21hi f d z ( [ P o -  ~o(Zl*)]u~J),e~-?ffoo t) [fro-- ~o(Z2)]tt~))~ o' 
-0o+t8 

t~>0 

where 
~ J )  = (__l)m tO/~(__3") 

Taking into account equations (5.24), (5.27) and the first resolvent identity 
for [(I -/~o)/2,o(1 - Po) - z] -a we easily get 

+co+is 

F(J)(zl, zz, t) = - ~ i  \ [z - -  Z 2 \ Z I Z 2 ] 
-co+is 

z~ + ~ o ( ~ ) - z -  ~o(~) 1 ~ ± ~ o ( ~ ) 1 ~  ~ , 
z l - z  Z+~o(Z) z - ~  J m/~ o, 

t i> 0 (5.30) 

It is important  to notice that in such an expression the non-continuable 
operator ~o(Z) (Lanz et at., 197t) is eliminated and only the operator 
~ro(Z), which is continuable by assumption, appears. Property (b) follows 
simply putting into (5.30) the continued operator 3~ro+(Zl,2) in place of 
Mo(zl, 2). Further, taking into account that  by definition of a~ ) one has 

[~o+(~)  + ~] ~ = 0 (5.31) 
we get 

+cc,+ie 

F~J)(z~' 2 ' t)  2 n i a f  d ze_~ t ( f~ j  ) 'z---Z21 [i  q -~r°+(z~) +3~] ) ~-~ -~2- JZ~)/n o 
-oo+i8 

) 
finally property (c) is obtained as follows 

F~)(2, 2, t) = e -i~' a~ J) , 1 -t ~ ~=a-~ / ~o 

= Z} -~ exp ( - i2t) ,  t >~ 0 (5.33) 
where 

As we have already stressed, the states ~)(z)  are in some sense a generalisa- 
tion of the common eigenstates of Eo and ~ .  In particular one expects that 
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in the case of a stable particle with internal energy 2 = U ,  the state ,?~)(U) 
built by the forementioned procedure is an eigenstate of/?o with eigenvalue 
U (Grecos, 1971). In fact, let us assume that 

[~ro(U) + u ]  a~, = 0 (5.35) 

and that, indicating 

then by the identity 

[Po - ~7o(Z)] a~> = e~)(~) 

s-lira ~) (z )  = e~)(U) 
z-~U 

(5.36) 

1 _ ~ O ) ( z , .  I = _ 1 z > [Po - No(Z)] z 1 
} - Eo ~m,  , z - + ~o (Z)  [z' + ~o(Z ' ) l  a~) + ~>(__S'_)z - z '  

which follows easily from (5.24), one has 

s -  }}m ~ 1  ~)(z ' )  ~ ) ( U )  
z ~ u  Z - -  L o Z - -  U 

and since [ z -  Eo] -1 is bounded 

1 1 - ( j )  __ - ( j )  
~_-_-ffo v,, ( U ) -  z_~V, , ,  (U) (5.37) 

Since 
Ilfi},l)(U)II2o = lim ([/~o - ?7-o(Z*)] a~ ), [Po - ?~o(Z)] t2~))~ o 

z~U 

d z  f z = v a  

Zj  is a normalisation constant. Conversely, if ~ )  is an eigenstate of Eo 
with eigenvalue U and if the projector Po is such that a neighbourhood 
I v of z = U and a K > 0 exist such that 

H[Po - ~7o+(Z*)] ~>lko < K, z E X~ (5.38) 

then by the identity 

[z + 2tlo(Z)] Po ~ )  = (z - U) [Po - ~+(z*)] v'~ ) (5.39) 

which follows immediately applying (5.24) to the eigenstate ~ )  of/?o and 
multiplying at the left by -Po, one has 

[ U +  ~o(U)]Po  ~,, ~) = 0 (5.40) 

Applying (5.24) to ~ ) ,  multiplying at the left by (1 - Po) and taking (5.39) 
into account one gets the identity 

(1 - -Po) v~> = - ~ o ( Z ) / ~ o  v~) 
I 

+ (z - U )  (1 - Po) z - (1 - Po)/7o(1 - fro) (1 - Po) ~ )  (5.41) 
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Finally if one assumes that (i) a neighbourhood I o' of z = U and a 
K" > 0 exist such that 

z - (1 - &)  &(1 - & )  (1 - &)~) < K ' ,  z ~ I d  (5.42) 

and that (ii) s l i m  O~)(z) exists, where ~ ) ( z ) =  [/~o- No(Z)]/~o~ ), one 
z-+U 

concludes from (5.41) that 

~ )  = s l i m  ~)(z) (5.43) 
z.~V 

6. An Example 

Let us illustrate briefly the embedding technique in the framework of the 
'Galilee' model (Levy-Leblond, 1967). We recall the Harniltonian of such 
a model: H=/TF + R I , 

2 ~,,+~)~/¢p + ap" p'~ ' + ' ' 

2 mM 
J/=M+m, co= q # - (6.1) 

2~ . . . . . . .  u :  

Uo is the internal energy of the bare V-quanta; ~/v(P), ~/N(P') are spinless 
fermion fields, a(k) a spin zero boson field which obey the canonical 
commutation and anti-commutation relations; f(co) is a cutoff function; 
we shall not consider in this paper the local coupling limitf(co) --> 1. 

To describe the embedding of'V-type' (stable or unstable) particles we 
consider the projector onto the eigenspace of the operator Ro~ with eigen- 
value Uo, where Ro~ is the internal energy operator for the free particles. 
One obtains 

~ 0  cv) (z) = ~(v)(z)  & 

.Z,v,(~)=_Uo + ~: f d q ~  (6.2) 

2~l~oV)(z) is analytically continuable into the lower half-plane provided 
f(co) is analytic. To each solution of equation j/#+v)(5) + ~ = 0 corresponds 
a particle with internal energy U and mean lifetime z, such that 

U =  ReL • = - [2  Im z"] -1 (6.3) 

One immediately verifies that in the case of stable V particle equation 
d/cv)(~) + ~ = 0 coincides with the equations given in Levy-Leblond (1967) 
and that equation (5.36) gives the dressed V-particle state. One has further 
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that  [~ ' (V)(z)+ z] -1 is the full V-particle propagator ,  so that  one sees 
f r o m  (6.3) that  the embedding prescription for  U and • coincides with the 
non-relativistic version of  the prescription for  unstable particles given by 
Peierls (1956). We stress that  each solution o f  equat ion jg(+v)(~) + ~ = 0 is 
to  our  opin ion  a candidate to  correspond to an unstable particle. Therefore 
in our  theory  many  particles can correspond to the same field. The same 
situation is met, in a rather  different context,  in the t reatment  o f  relativistic 
unstable particle of  Matthews and Salam (1958). 
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